Институт развития информационного общества
   

В России при участии ИРИО подготовлен национальный стандарт в области аналитики больших данных

В рамках проекта по стандартизации больших данных Центра компетенций НТИ по большим данным МГУ подготовлен отечественный стандарт в области систем управления процессами аналитики больших данных. Документ является переводом соответствующего международного стандарта ISO. До этого в России был утвержден словарь терминов в области больших данных.

Технический комитет по стандартизации «Искусственный интеллект» (ТК-164) вынес на публичное обсуждение первую редакцию стандарта «Информационные технологии. Искусственный интеллект. Структура управления процессами аналитики больших данных». Об этом сообщили представители Национальной технологической инициативы (НТИ).

Проект стандарта был разработан Национальным центром цифровой экономики Московского государственного университета имени М.В. Ломоносова в рамках указанного выше проекта и Институтом развития информационного общества. ТК-164 был создан в 2019 г. по инициативе Российской венчурной компании (РВК) при поддержке Минпромторга России и Росстандарта.

Национальный стандарт представляет собой русскоязычную адаптацию разрабатываемого международного стандарта ISO/IEC 24668 Information technology – Artificial intelligence – Process management framework for big data analytics. Разработка российской версии стандарта была включена в Перспективную программу стандартизации по приоритетному направлению «Искусственный интеллект» на период 2021-2024 гг., она также была утверждена Минэкономразвития России и Росстандартом.

В первой редакции национального стандарта описана всесторонняя концепция, как эффективно применять возможности аналитики больших данных в различных службах и подразделениях организациях. Именно с использованием аналитики больших данных осуществляются процессы автоматизации, прогнозирования и поддержки принятия решений.

Проект стандарта определяет эталонную модель процесса аналитики больших данных (Big Data Analytics Process Reference Model, BDA PRM), а также модель оценки этого процесса (Big Data Analytics Process Assessment Model, BDA PAM). В документе описаны пять категорий процессов: процессы заинтересованных сторон внутри организации, процессы развития компетенций, процессы управления данными, процессы развития аналитики и процессы интеграции технологий.

Основная целевая аудитория стандарта – лица, внедряющие аналитику больших данных в организациях, а также специалисты по оценке возможностей аналитики больших данных, сообщили в пресс-службе НТИ.

«Внедряя, развивая и оценивая процессы аналитики больших данных на основе международного стандарта, организации смогут улучшить принятие решений, повысить качество обслуживания клиентов, усовершенствовать реагирование на возможности и угрозы, а следовательно – снизить количество ошибок, увеличить эффективность и производительность своей деятельности, уменьшить затраты», — отмечает председатель подкомитета «Данные» (ПК 02) в составе ТК 164, председатель Совета директоров Института развития информационного общества Юрий Хохлов.

Глобально стандарт позволит заинтересованным сторонам использовать единый терминологический аппарат, повысить распространение и единство восприятия информации, увеличить стабильность терминологии, создать предпосылки для взаимного проникновения отечественных и мировых исследований в области работы с большими данными.

По факту предлагаемая редакция национального стандарта является переводом редакции соответствующего международного стандарта. «Международная стандартизация обгоняет российскую, поэтому важно сократить отставание благодаря переводам, — пояснили в пресс-службе НТИ. — Переводы также позволяют гармонизировать между собой международные и национальные стандарты. Среди разработок Национального центра цифровой экономии МГУ есть и оригинальные стандарты, учитывающие российскую деятельность, но не всегда это необходимо».

Ранее Росстандарт утвердил ГОСТ «Информационные технологии. Большие данные. Обзор и словарь», который идентичен международному стандарту Information technology – Big data – Overview and vocabulary. Разработчиками также выступили национальный центр цифровой экономики МГУ и Институт развития информационного общества. Термины, установленные в данном стандарте, обязательны для применения во всех видах документации литературы по данной научно-технической отрасли, входящих в сфере работ по стандартизации и использующих результаты этих работ.

«Стандартизация искусственного интеллекта поможет сформировать на рынке единое представление о том, что такое искусственный интеллект и какие требования должны предъявляться к технологии на этапах разработки и внедрения, — говорит основатель компании «Роббо» Павел Фролов. — Это особенно важно для сегмента интеллектуальных технологий, которые представляют собой «черный ящик» для пользователей: качество их работы зависит от многих факторов, а логика принятий решений непрозрачна. Разработка типовых требований к искусственному интеллекту позволит гарантировать качество и безопасность работы интеллектуальных систем».

Фролов добавляет, что отрасль также ждет документа о типовых требованиях к искусственному интеллекту в сфере образования – это предусмотрено программой стандартизации искусственного интеллекта на 2021-2024 гг. «Образование – сфера с повышенными требованиям к качеству и безопасности технологий, и стандарты необходимы для того, чтобы шире использовать интеллектуальные технологии в процессе обучения», — отмечает он.

Источник: CNews